LLNL-TR-843852

COG Beta-Effective Benchmarks

December 20, 2022

Dave Heinrichs Ed Lent Will Zywiec

Nuclear Criticality Safety Division Lawrence Livermore National Laboratory, 7000 East Avenue, L-198, Livermore, CA, 94550

Benchmarks

Beta-eff (β_{eff}) values have been established for several critical assemblies as provided in Table 1. Note that these values as taken from the references cited generally agree well with Table XXXIV of Brown (2018) but with some minor discrepancies. As Brown (2018) provides no references for the experimental values cited in this "big paper," the curated data in Table 1 are preferred and used in this work.

No.	Name	Reference	Experiment
1	NASA ZPR-1 H/X=190	Alger (1966)	900 ± 60
2	NASA ZPR-1 H/X=473	Alger (1966)	860 ± 50
3	NASA ZPR-1 H/X=565	Alger (1966)	820 ± 40
4	TCA 1.50U 19x19	Suzaki (1999)	771 ± 18
5	TCA 1.83U Cylinder	Nakajima (2001)	771 ± 17
6	TCA 1.83U 17x17	Suzaki (1999)	766 ± 18
7	TCA 2.48U 16x16	Suzaki (1999)	765 ± 18
8	SNEAK 9C1	Fischer (1977)	758 ± 24
9	IPEN/MB-01	dos Santos (2013)	750 ± 4
10	TCA 3.00U 15x15	Suzaki (1999)	749 ± 17
11	FCA XIX-1	Okajima (2002)	742 ± 24
12	BFS-73-1	Manturov (2006)	735 ± 13
13	U9	Fort (1999)	731 ± 15
14	Masurca R2	Okajima (2002)	721 ± 11
15	Big Ten	Kodeli (2017)	720 ± 7
16	U/Fe (ZPR9/34)	Fort (1999)	671 ± 14
17	Topsy (25 Flattop)	Kodeli (2017)	665 ± 13
18	Godiva	Keepin (1965)	659 ± 28
19	OR Sphere Config. 1	Marshall	657 ± 9
20	OR Sphere Config. 2	Marshall	657 ± 9
21	SNEAK 7B	Ivanov (2009)	429 ± 22
22	SNEAK 9C2	Fischer (1977)	426 ± 19
23	SNEAK 7A	Ivanov (2009)	395 ± 22
24	C Ref (ZPPR21B)	Fort (1999)	384 ± 8
25	FCA XIX-2	Okajima (2002)	364 ± 9
26	23 Flattop	Kodeli (2017)	360 ± 9
27	Masurca Zona 2	Okajima (2002)	349 ± 6
28	Skidoo (Jezebel 23)	Kodeli (2017)	290 ± 10
29	Popsy (49 Flattop)	Kodeli (2017)	276 ± 7
30	FCA XIX-3	Okajima (2002)	251 ± 4
31	P/C/SST (ZPR6-10)	Fort (1999)	223 ± 5
32	Jezebel	Kodeli (2017)	195 ± 10

Table 1.	Beta-effective benchmark values
----------	---------------------------------

Models

Table 2 provides references where each benchmark model is published, and it may be observed that 66% are taken from ICSBEP or IRPhE evaluations. Note that the errors given in Table 1 do not include uncertainties due to materials and geometry.

No.	Name	Model	Reference	Filename
1	NASA ZPR-1 H/X=190	Alger (1966)	NASA TN D-3709	nasa-zpr1-1
2	NASA ZPR-1 H/X=473	Alger (1966)	NASA TN D-3709	nasa-zpr1-2
3	NASA ZPR-1 H/X=565	Alger (1966)	NASA TN D-3709	nasa-zpr1-3
4	TCA 1.50U 19x19	ICSBEP	LEU-COMP-THERM-006, Rev. 1	lct006-1
5	TCA 1.83U Cylinder	Nakajima (2001)	J. Nucl. Sci. and Tech. 38 (12) 1120 (2001)* [*]	TCA183UCYL
6	TCA 1.83U 17x17	ICSBEP	LEU-COMP-THERM-006, Rev. 1	LCT006-4
7	TCA 2.48U 16x16	ICSBEP	LEU-COMP-THERM-006, Rev. 1	LCT006-9
8	SNEAK 9C1	Fischer (1977)	NSE 62 , 105-116 (1977)	SNEAK9C1
9	IPEN/MB-01	IRPhE	IPEN(MB01)-LWR-RESR-001	IPENMB01
10	TCA 3.00U 15x15	ICSBEP	LEU-COMP-THERM-006, Rev. 1	lct006-14
11	FCA XIX-1	Okajima (2002)	Prog. In Nuclear Energy 41 (1-4) 285 (2002)	FCA-XIX-1
12	BFS-73-1	IRPhE	BFS1-LMFR-EXP-001	bfs73-1
13	U9	ICSBEP	IEU-MET-FAST-010	imf010-1
14	Masurca R2	Okajima (2002)	Prog. In Nuclear Energy 41 (1-4) 285 (2002)	MASURCA-R2
15	Big Ten	ICSBEP	IEU-MET-FAST-007	imf007-1d
16	U/Fe (ZPR9/34)	ICSBEP	HEU-MET-INTER-001	hmi001
17	Topsy (25 Flattop)	ICSBEP	HEU-MET-FAST-028	hmf028
18	Godiva	ICSBEP	HEU-MET-FAST-001	hmf001
19	OR Sphere 1	ICSBEP	HEU-MET-FAST-100	hmf100-1
20	OR Sphere 2	ICSBEP	HEU-MET-FAST-100	hmf100-2
21	SNEAK 7B	IRPhE	SNEAK-LMFR-EXP-001	SNEAK7B
22	SNEAK 9C2	Fischer (1977)	NSE 62 , 105-116 (1977)	SNEAK9C2
23	SNEAK 7A	IRPhE	SNEAK-LMFR-EXP-001	SNEAK7A
24	C Ref (ZPPR21B)	ICSBEP	MIX-MET-FAST-011	mmf011-b
25	FCA XIX-2	Okajima (2002)	Prog. In Nuclear Energy 41 (1-4) 285 (2002)	FCA-XIX-2
26	23 Flattop	ICSBEP	U233-MET-FAST-006	umf006-1
27	Masurca Zona 2	Okajima (2002)	Prog. In Nuclear Energy 41 (1-4) 285 (2002)	MASURCA-ZONA2
28	Skidoo (Jezebel 23)	ICSBEP	U233-MET-FAST-001	umf001-1
29	Popsy (49 Flattop)	ICSBEP	PU-MET-FAST-006	pmf006
30	FCA XIX-3	Okajima (2002)	Prog. In Nuclear Energy 41 (1-4) 285 (2002)	FCA-XIX-3
31	P/C/SST (ZPR6-10)	ICSBEP	PU-MET-INTER-002	pmi002
32	Jezebel	ICSBEP	PU-MET-FAST-001	pmf001

Table 2. Beta-effective benchmark models

Methods

Three beta-eff estimators are available in COG 11.3: the "new method" and "prompt method" described by van der Marck (2004) and a "modified new method" described by Pearlstein (1999). In COG, prompt neutrons and delayed neutrons are tracked as separate particles so that both estimates can be calculated in just one (forward) calculation.

The "new method" defines beta-eff as the number of fissions induced by delayed neutrons divided by the number of all fissions, or $\beta_{eff} = F_d/F_t$.

^{*} Reference cited for loading patter and critical height. All else taken from LEU-COMP-THERM-006, Rev. 1.

The "modified new method" defines beta-eff as the number of neutrons from fissions induced by delayed neutrons divided by the number of neutrons from all fissions, or $\beta_{eff} = (\nu F)_d/(\nu F)_t$.

The "prompt method" is estimated as $\beta_{eff} = 1 - (k_p/k_{eff})$, where k_p is the prompt effective neutron multiplication factor.

Results

The results of COG 11.3 calculations with ENDF/B-VIII.0 and JEFF-3.3 nuclear data libraries are provided in Appendix A, Tables A-1 and A-2, respectively. C/E results shown in **RED** in these tables correspond to calculations where $|C/E - 1| > 3\sigma$, where σ is the combined experimental and calculational uncertainty. The corresponding calculated k-eff results are provided in Appendix B.

COG 11.3 calculations with the "new method" using ENDF/B-VIII.0 data are shown to produce results with $|C/E - 1| < 3\sigma$ in all cases, whereas the other methods produce a few minor outliers. Furthermore, the "new method" using ENDF/B-VIII.0 data is observed to produce "over" and "under" results consistent with 50/50 expectations whereas the other methods appear to be slightly over or under predicting. JEFF-3.3 results are slightly larger overall than ENDF/B-VIII.0 results.

	ENDF/B-VIII.0				JEFF-3.3			
Method	X > 0	X = 0	X < 0	X > 3σ	X > 0	X = 0	X < 0	X > 3σ
$\beta_{eff} = F_d/F_t$	15	2	15	0	24	0	8	3
$\beta_{eff} = (\nu F)_d / (\nu F)_t$	6	0	26	2	12	1	19	2
$\beta_{eff} = 1 - (k_p/k_{eff})$	5	1	26	3	10	0	22	2

In all but a few cases, it is also observed that $F_d/F_t \ge (\nu F)_d/(\nu F)_t \ge 1 - (k_{prompt}/k_{eff})$, and all estimators produce equivalent results for the most thermal systems. In those other cases, this relation holds within the given statiscs.

References

Donald Alger et al., "Measurement of Effective Delayed Neutron Fraction for NASA Zero Power Reactor I," NASA TN D-3709, November 1966.

Adimir dos Santos, et al., "Reactor Physics Experiments in the IPEN/MB-01 Research Reactor Facility," IPEN(MB01)-LWR-RESR-001, CRIT-BUCK-SPEC-REAC-COEF-KIN-RRATE-POWDIS, March 31, 2013. International Handbook of Evaluated Reactor Physics Measurements, NEA/NSC/DOC(2006)1.

D. A. Brown et al., "ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data," Nuclear Data Sheets **148** (2018) 1-142.

S. Okajima et al., "Summary on International Benchmark Experiments for Effective Delayed Neutron Fraction (β_{eff})," Progress in Nuclear Energy: **41** (1-4) 285-301 (2002).

E. A. Fischer, "Integral Measurements of the Effective Delayed Neutron Fractions in the Fast Critical Assembly SNEAK," Nuclear Science and Engineering: **62**, 105-116 (1977).

E. Fort et al., "Recommended Values of the Delayed Neutron Yield for: U-235; U-238 and Pu 239," JEFDOC-820, 1999.

Evgeny Ivanov et al., "SNEAK 7A and 7B Pu-Fueled Fast Critical Assemblies in the Karlsruhe Fast Critical Facility," SNEAK-LMFR-EXP-001, CRIT-BUCK-SPEC-COEF-KIN-RRATE-MISC, Rev. 1, March 31, 2011. International Handbook of Evaluated Reactor Physics Measurements, NEA/NSC/DOC(2006)1.

Ivan Kodeli, "Combined Use of k-effective and beta-effective Measurements for Nuclear Data Validation and Improvement," EPJ Web of Conferences, **146**, 06018 (2017).

Gennady Manturov et al., "BFS-73-1 Assembly: Experimental Model of Sodium Cooled Fast Reactor with Core of Metal Uranium Fuel of 18.5% Enrichment and Depleted Uranium Dioxide Blanket," BFS1-LMFR-EXP-001, CRIT-SPEC-COEF-KIN-RRATE, March 31, 2006. International Handbook of Evaluated Reactor Physics Measurements, NEA/NSC/DOC(2006)1.

Margaret A. Marshall, "ORSPHERE: Physics Measurements for Bare, HEU(93.2)-Metal Sphere," ORSPHERE-FUND-EXP-001, CRIT-REAC-COEF-KIN-RRATE, Rev. 1, March 31, 2015. International Handbook of Evaluated Reactor Physics Measurements, NEA/NSC/DOC(2006)1.

Ken Nakajima, "Re-evaluation of the Effective Delayed Neutron Fraction Measured by the Substitution Technique for a Light Water Moderated Low-enriched Uranium Core," Journal of Nuclear Science and Technology: **38** (12) 1120-1125 (2001).

Sol Pearlstein, "The Effective Delayed Neutron Fraction for Bare-Metal Criticals," Nuclear Technology: **128**, 482-408 (1999).

Takenori Suzaki et al., "Precise Determination of β_{eff} for Water-Moderated U and U-Pu Cores by a Method Using Buckling Coefficient of Reactivity," pp. 386-394, Sixth International Conference on Nuclear Criticality Safety, ICNC '99, September 20-24, 1999.

Steven C. van der Marck and Robin Klein Meulekamp, "Calculating the effective delayed neutron fraction using Monte Carlo techniques," Proceedings of the International Conference on the Physics of Reactors, PHYSOR 2004, Chicago, IL, April 25-29, 2004.

Appendix A

	Assembly	Experiment	β_{eff} = Fissions by delayed neutrons divided by all fissions		β_{eff} = Neutrons from fissions by delayed neutrons divided by neutrons from all fissions		β_{eff} = 1 – (k-prompt/k-eff)	
No.	Name	β_{eff}	β_{eff}	C/E	eta_{eff}	C/E	β_{eff}	C/E
1	NASA ZPR-1 H/X=190	900 ± 60	844	0.938 ± 6.7%	844	0.938 ± 6.7%	844 ± 2	0.938 ± 6.7%
2	NASA ZPR-1 H/X=473	860 ± 50	806	0.937 ± 5.8%	805	0.936 ± 5.8%	805 ± 1	0.936 ± 5.8%
3	NASA ZPR-1 H/X=565	820 ± 40	794	0.968 ± 4.9%	794	0.968 ± 4.9%	794 ± 1	0.968 ± 4.9%
4	TCA 1.50U 19x19	771 ± 18	772	1.001 ± 2.3%	765	0.992 ± 2.3%	763 ± 6	0.990 ± 2.5%
5	TCA 1.83U Cylinder	771 ± 17	771	1.000 ± 2.2%	766	0.994 ± 2.2%	763 ± 5	0.990 ± 2.3%
6	TCA 1.83U 17x17	766 ± 18	770	1.005 ± 2.3%	764	0.997 ± 2.3%	762 ± 5	0.995 ± 2.4%
7	TCA 2.48U 16x16	765 ± 18	764	0.999 ± 2.4%	759	0.992 ± 2.4%	757 ± 5	0.990 ± 2.4%
8	SNEAK 9C1	758 ± 24	727	0.959 ± 3.2%	706	0.931 ± 3.2%	700 ± 4	0.923 ± 3.2%
9	IPEN/MB-01	750 ± 4	748*	0.997 ± 0.5%	744*	0.992 ± 0.5%	743 ± 38	0.991 ± 5.1%
10	TCA 3.00U 15x15	749 ± 17	758*	1.012 ± 2.3%	754*	1.007 ± 2.3%	752 ± 5	1.004 ± 2.4%
11	FCA XIX-1	742 ± 24	737	0.993 ± 3.2%	725	0.977 ± 3.2%	723 ± 5	0.974 ± 3.3%
12	BFS-73-1	735 ± 13	735	1.000 ± 1.8%	715	0.973 ± 1.8%	710 ± 8	0.966 ± 2.1%
13	U9	731 ± 15	734	1.004 ± 2.1%	705	0.964 ± 2.1%	696 ± 4	0.952 ± 2.1%
14	Masurca R2	721 ± 11	738	1.024 ± 1.5%	719	0.997 ± 1.5%	715 ± 21	0.992 ± 3.3%
15	Big Ten	720 ± 7	729	$1.013 \pm 1.0\%$	699	0.971 ± 1.0%	688 ± 4	0.956 ± 1.1%
16	U/Fe (ZPR9/34)	671 ± 14	687	1.024 ± 2.1%	683	1.018 ± 2.1%	683 ± 8	1.018 ± 2.4%
17	Topsy (25 Flattop)	665 ± 13	658	0.989 ± 2.0%	625	0.940 ± 2.0%	617 ± 7	0.928 ± 2.3%
18	Godiva	659 ± 28	679	1.030 ± 4.2%	647	0.982 ± 4.2%	642 ± 4	0.974 ± 4.3%
19	OR Sphere Config. 1	657 ± 9	680	1.035 ± 1.4%	648	0.986 ± 1.4%	643 ± 4	0.979 ± 1.5%
20	OR Sphere Config. 2	657 ± 9	679	1.033 ± 1.4%	646	0.983 ± 1.4%	641±4	0.976 ± 1.5%
21	SNEAK 7B	429 ± 22	414	0.965 ± 5.1%	410	0.956 ± 5.1%	406 ± 6	0.946 ± 5.3%
22	SNEAK 9C2	426 ± 19	381	0.894 ± 4.5%	374	0.878 ± 4.5%	371±6	0.871 ± 4.7%
23	SNEAK 7A	395 ± 22	368	0.932 ± 5.6%	362	0.916 ± 5.6%	359 ± 6	0.909 ± 5.8%
24	C Ref (ZPPR21B)	384 ± 8	366	0.953 ± 2.1%	354	0.922 ± 2.1%	353 ± 28	0.919 ± 8.2%
25	FCA XIX-2	364 ± 9	372	1.022 ± 2.5%	366	1.005 ± 2.5%	364 ± 8	1.000 ± 3.3%
26	23 Flattop	360 ± 9	359	0.997 ± 2.5%	340	0.944 ± 2.5%	336 ± 8	0.933 ± 3.5%
27	Masurca Zona 2	349 ± 6	343	0.983 ± 1.7%	338	0.968 ± 1.7%	336 ± 22	0.963 ± 6.8%
28	Skidoo (Jezebel 23)	290 ± 10	311	1.072 ± 3.4%	294	1.014 ± 3.4%	294 ± 4	1.014 ± 3.7%
29	Popsy (49 Flattop)	276 ± 7	272	0.986 ± 2.5%	259	0.938 ± 2.5%	256 ± 9	0.928 ± 4.3%
30	FCA XIX-3	251 ± 4	258	1.028 ± 1.6%	254	1.012 ± 1.6%	253 ± 7	1.008 ± 3.2%
31	P/C/SST (ZPR6-10)	223 ± 5	230	1.031 ± 2.2%	228	1.022 ± 2.2%	227 ± 8	1.018 ± 4.2%
32	Jezebel	195 ± 10	197	$1.010 \pm 5.1\%$	184	0.944 ± 5.1%	183 ± 5	0.938 ± 5.8%

Table A-1. COG 11.3 calculated beta-eff results (in pcm) with ENDF/B-VIII.0

*The COG calculational uncertainty in β_{eff} is ± 1 pcm in these cases. Cases highlighted in RED have $|C/E-1| > 3\sigma$.

Appendix A (continued)

	Assembly	Experiment	β_{eff} = Fissions by delayed neutrons divided by all fissions		β_{eff} = Neutrons from fissions by delayed neutrons divided by neutrons from all fissions		β_{eff} = 1 – (k-prompt/k-eff)	
No.	Name	β_{eff}	β_{eff}	C/E	β_{eff}	C/E	β_{eff}	C/E
1	NASA ZPR-1 H/X=190	900 ± 60	870*	0.967 ± 6.7%	870	0.967 ± 6.7%	869 ± 7	0.965 ± 6.7%
2	NASA ZPR-1 H/X=473	860 ± 50	828	0.963 ± 5.8%	828	0.963 ± 5.8%	829 ± 7	0.964 ± 5.9%
3	NASA ZPR-1 H/X=565	820 ± 40	815	0.994 ± 4.9%	815	0.994 ± 4.9%	816 ± 5	0.995 ± 4.9%
4	TCA 1.50U 19x19	771 ± 18	794	1.030 ± 2.3%	787	1.021 ± 2.3%	785 ± 6	1.018 ± 2.5%
5	TCA 1.83U Cylinder	771 ± 17	794*	1.030 ± 2.2%	788	1.022 ± 2.2%	785 ± 8	1.018 ± 2.4%
6	TCA 1.83U 17x17	766 ± 18	791	1.033 ± 2.3%	785	1.025 ± 2.3%	784 ± 6	1.023 ± 2.5%
7	TCA 2.48U 16x16	765 ± 18	786	1.027 ± 2.4%	781	1.021 ± 2.4%	779 ± 7	1.018 ± 2.5%
8	SNEAK 9C1	758 ± 24	735*	0.970 ± 3.2%	712	0.939 ± 3.2%	705 ± 8	0.930 ± 3.4%
9	IPEN/MB-01	750 ± 4	770*	1.027 ± 0.5%	765	1.020 ± 0.5%	765 ± 8	1.020 ± 1.2%
10	TCA 3.00U 15x15	749 ± 17	780	1.041 ± 2.3%	775	1.035 ± 2.3%	774 ± 6	1.033 ± 2.4%
11	FCA XIX-1	742 ± 24	744*	1.003 ± 3.2%	731	0.985 ± 3.2%	734 ± 8	0.989 ± 3.4%
12	BFS-73-1	735 ± 13	741*	1.008 ± 1.8%	720	0.980 ± 1.8%	707 ± 8	0.962 ± 2.1%
13	U9	731 ± 15	752	1.029 ± 2.1%	724	0.990 ± 2.1%	702 ± 7	0.960 ± 2.3%
14	Masurca R2	721 ± 11	742*	1.029 ± 1.5%	723	1.003 ± 1.5%	709 ± 8	0.983 ± 1.9%
15	Big Ten	720 ± 7	750*	1.042 ± 1.0%	719	0.999 ± 1.0%	701 ± 7	0.974 ± 1.4%
16	U/Fe (ZPR9/34)	671 ± 14	686*	1.022 ± 2.1%	682	1.016 ± 2.1%	688 ± 8	1.025 ± 2.4%
17	Topsy (25 Flattop)	665 ± 13	663	0.997 ± 2.0%	629	0.946 ± 2.0%	617 ± 7	0.928 ± 2.3%
18	Godiva	659 ± 28	674	1.023 ± 4.2%	641	0.973 ± 4.2%	634 ± 7	0.962 ± 4.4%
19	OR Sphere Config. 1	657 ± 9	675	1.027 ± 1.4%	642	0.977 ± 1.4%	637 ± 2	0.970 ± 1.4%
20	OR Sphere Config. 2	657 ± 9	678	1.032 ± 1.4%	646	0.983 ± 1.4%	640 ± 2	0.974 ± 1.4%
21	SNEAK 7B	429 ± 22	433	1.009 ± 5.1%	427	0.995 ± 5.1%	423 ± 7	0.986 ± 5.4%
22	SNEAK 9C2	426 ± 19	397	0.932 ± 4.5%	389	0.913 ± 4.5%	385 ± 7	0.904 ± 4.8%
23	SNEAK 7A	395 ± 22	385	0.975 ± 5.6%	377	0.954 ± 5.6%	375 ± 7	0.949 ± 5.9%
24	C Ref (ZPPR21B)	384 ± 8	366	0.953 ± 2.1%	354	0.922 ± 2.1%	349 ± 7	0.909 ± 2.9%
25	FCA XIX-2	364 ± 9	388	1.066 ± 2.5%	381	1.047 ± 2.5%	373 ± 7	1.025 ± 3.1%
26	23 Flattop	360 ± 9	366	1.017 ± 2.5%	345	0.958 ± 2.5%	339 ± 7	0.942 ± 3.2%
27	Masurca Zona 2	349 ± 6	357	1.023 ± 1.7%	351	1.006 ± 1.7%	347 ± 7	0.994 ± 2.7%
28	Skidoo (Jezebel 23)	290 ± 10	308	1.062 ± 3.4%	290	1.000 ± 3.4%	289 ± 7	0.997 ± 4.2%
29	Popsy (49 Flattop)	276 ± 7	284	1.029 ± 2.5%	269	0.975 ± 2.5%	264 ± 6	0.957 ± 3.4%
30	FCA XIX-3	251 ± 4	265	1.056 ± 1.6%	260	1.036 ± 1.6%	257 ± 7	1.024 ± 3.2%
31	P/C/SST (ZPR6-10)	223 ± 5	235	1.054 ± 2.2%	232	1.040 ± 2.2%	232 ± 7	1.040 ± 3.8%
32	Jezebel	195 ± 10	201	$1.031 \pm 5.1\%$	187	0.959 ± 5.1%	186 ± 6	0.954 ± 6.1%

Table A-2. COG 11.3 calculated beta-eff results (in pcm) with JEFF-3.3

*The COG calculational uncertainty in β_{eff} is ± 1 pcm in these cases. Cases highlighted in RED have $|C/E-1| > 3\sigma$.

Appendix B

	Assembly	ENDF/B-VIII.0	JEFF-3.3
No.	Name	k-eff	k-eff
1	NASA ZPR-1 H/X=190	0.99846 ± 0.00001	0.99870 ± 0.00005
2	NASA ZPR-1 H/X=473	1.00157 ± 0.00001	1.00161 ± 0.00001
3	NASA ZPR-1 H/X=565	1.00174 ± 0.00001	1.00136 ± 0.00005
4	TCA 1.50U 19x19	1.00023 ± 0.00001	1.00332 ± 0.00005
5	TCA 1.83U Cylinder	1.00027 ± 0.00001	1.00204 ± 0.00005
6	TCA 1.83U 17x17	1.00055 ± 0.00001	1.00374 ± 0.00001
7	TCA 2.48U 16x16	1.00086 ± 0.00001	1.00085 ± 0.00005
8	SNEAK 9C1	1.00296 ± 0.00001	1.00612 ± 0.00005
9	IPEN/MB-01	1.00368 ± 0.00010	1.00312 ± 0.00005
10	TCA 3.00U 15x15	1.00091 ± 0.00003	1.00231 ± 0.00005
11	FCA XIX-1	1.01412 ± 0.00001	1.01067 ± 0.00005
12	BFS-73-1	0.99395 ± 0.00001	0.99622 ± 0.00005
13	U9	0.99118 ± 0.00001	0.99401 ± 0.00005
14	Masurca R2	0.98971 ± 0.00001	0.99240 ± 0.00005
15	Big Ten	1.00023 ± 0.00001	1.00077 ± 0.00005
16	U/Fe (ZPR9/34)	0.99866 ± 0.00001	1.01033 ± 0.00005
17	Topsy (25 Flattop)	1.00112 ± 0.00001	1.00448 ± 0.00005
18	Godiva	1.00028 ± 0.00001	1.00051 ± 0.00005
19	OR Sphere Config. 1	1.00407 ± 0.00001	1.00429 ± 0.00002
20	OR Sphere Config. 2	0.99802 ± 0.00001	0.99801 ± 0.00002
21	SNEAK 7B	1.00255 ± 0.00001	1.00880 ± 0.00005
22	SNEAK 9C2	1.00087 ± 0.00001	1.00842 ± 0.00005
23	SNEAK 7A	1.00616 ± 0.00001	1.01256 ± 0.00005
24	C Ref (ZPPR21B)	0.99030 ± 0.00001	0.99037 ± 0.00005
25	FCA XIX-2	0.98632 ± 0.00001	0.99143 ± 0.00005
26	23 Flattop	1.00023 ± 0.00001	1.00354 ± 0.00005
27	Masurca Zona 2	0.99550 ± 0.00002	1.00054 ± 0.00005
28	Skidoo (Jezebel 23)	1.00062 ± 0.00001	1.00114 ± 0.00005
29	Popsy (49 Flattop)	0.99993 ± 0.00001	1.00341 ± 0.00005
30	FCA XIX-3	0.98545 ± 0.00001	0.99503 ± 0.00005
31	P/C/SST (ZPR6-10)	1.00390 ± 0.00002	1.00268 ± 0.00005
32	Jezebel	0.9997927== ± 0.00001	0.99923 ± 0.00005

Table B-1. COG 11.3 calculated k-eff results with ENDF/B-VIII.0 and JEFF-3.3