Lawrence Livermore National Laboratory

Delayed Fission Gammas

Ed Lent and Dave Heinrichs

Presented at the Nuclear Criticality Safety Program Technical Conference at Oak Ridge National Laboratory, March 1-2, 2011

Lawrence Livermore National Laboratory, P.O. Box 808, L-198, Livermore, CA 94551-0808 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL had a DOE NCSP task to test the suitability of ENDF/B-VII.0 delayed fission gamma data for use in criticality accident (dose) assessment

- ENDF/B-VII.0 delayed fission gamma data are not suitable for this application (slides 3 and 4)
- Yanagisawa's results Journal of Nuclear Science and Technology, vol. 39, no. 5, 499-505 (2002) – look promising
- New work by Ed Lent (LLNL) following Pruett and Yanagisawa

ENDF/B-VII.0

ENDF/B-VII.0 data provided by LLNL

UNCLASSIFIED

Simulating β -delayed γ 's from fission

Monte-Carlo model (J.Pruet, *et al.* NIM A, 521, 608 (2004))

- Follow β-decay chain to stability
- Collect γ's along the way.
- Generally good agreement w/ experiment of Norman et al.

This detailed data should work for dose assessment purposes as well but

UCRL-PRES-225819

Pruet 2004

Putting data in ENDF/B format

- Approximate γ spectrum/unit time as product of time distribution and multiplicity:
- $s_{\gamma}(E,E_{\gamma},t)=y(E,E_{\gamma})T(t)$
- In MT=460, MF=1,14
- 3129 lines in ²³⁹Pu, 3262 lines in ²³⁵U
- Data in use in COG transport code

E' = 944 (keV)

UNCLASSIFIED

Unfortunately, Pruet data way off in energy and multiplicity; e.g., for ²³⁵U:

Nd	Ed	<u>Reference</u>
3.6 g/f	2.89 MeV/f	Pruet (2004)
6.66 g/f	6.22 MeV/f	Lent (2010) this work
N/A	6.33(5) MeV/f	ENDF/B-VII.0
6.51 g/f	6.43(30) MeV/f	PhysRevC 6:1023(1972)
6.7 g/f	6.51(30) MeV/f	PhysRevC 7:1173 (1973)
7.45 g/f	7.18(26) MeV/f	PhysRevC 3:373 (1971)
7.9 g/f		PhysRevC 6:1023 (1967)

Ed/Nd = 0.80 MeV/g (Pruet) when it should be ~ 1 MeV/g.

ENDF/B-VII.0 data is not suitable for dose calculations

This was a surprise!

Lawrence Livermore National Laboratory

UNCLASSIFIED

Yanagisawa 2002

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 5, 499–505 (May 2002) provides detailed multiplicity data <u>without spectra</u>.

Ed Lent digitized and fit Yanagisawa's time-dependent photon multiplicity data

Yanagisawa 2002

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 5, 499–505 (May 2002)

Ed Lent also integrated these equations to determine the cumulative number of delayed photons in the time interval [0, T]:

LLNL DFG Accomplishments

Ed Lent replicated previous work by Pruett and Yanagisawa by developing new libraries and codes:

COGFY

T.R. England and B.F. Rider database (LA-UR-94-3106, ENDF-349) of fission products (789 FP nuclides for ²³⁵U vs. probability at the instant of fission) – like Pruett

COGDC

JENDL-FPDD2000 containing 1221 FP half-lives, daughter branching ratios, and discrete and/or continuous gamma energy spectra – like Yanagisawa

RadSrc

* Bateman solutions previously developed for gamma emission from α -decay

GetEG

The final piece is a code, GetEG, to put all the above pieces together. The input is *isotope t*, where *isotope* is one of the FY isotopes (e.g., fast pooled neutron induced fission of U235), and *t* is the time in seconds. Start with the first nuclide in the *isotope*'s fission product list. Use the DC branching ratio data to develop the (various possible) decay chain(s), add the DC half-life data to get the resultant nuclides amplitudes and decay rates at time *t*, sum the DC discrete and/or continuous gamma energies to get the number of delayed gammas and associated gamma energy spectrum. Weight these results with the appropriate FY probability. Step through the remaining nuclides in the *isotope*'s fission product list in a similar manner, summing the results as you go.

Results (1)

Lent's calculations for ²³⁵U produce delayed FP gamma multiplicities about 4% lower than Yanagisawa's results – **good agreement!**

Using JENDL database instead of England & Rider may result in even better agreement.

JEFF data is also available.

Results (2)

Lent performed FP decay calculations for ²³⁵U out to 1e10 seconds and integrated the data to yield the photons/fission in the time interval [0, T]:

Results (3)

Ed Lent compared his calculated <u>multiplicity</u> for ²³⁵U against measured data ...

Results (4)

... and Ed Lent compared his calculated <u>spectra</u> for ²³⁵U against LANL (Godiva) measured data at early times (< 1 min) ...

Results (5)

... and Ed Lent compared his calculated <u>spectra</u> for ²³⁵U against Nelms & Cooper measured data later times (1/2 hour to 97 days) ...

Results (7) and Conclusions

Ed Lent also <u>normalized</u> and compared calculated <u>spectra</u> for various time intervals and compared it to the prompt spectrum ...

Criticality accident slide-rule

Lent's results demonstrate good agreement with the ORNL "slide rule" using:

- COG11 using Yanasigawa's time-dependent ²³⁵U multiplicity data with prompt gamma spectrum
- COG11 using Lent's time-dependent ^{234,235,238}U multiplicity and delayed gamma spectra
- Hand calculated dose (estimated from COG11DFG calculated rate at late times) (fix in progress)

What's next?

- COGDFG library completed for fast neutron induced delayed fission gammas for: Th232, U233, U234, U235, U236, U238, Pu239, Pu240, Pu241.
- More testing needed (similar to U235 testing completed in 2010)
- Need COGDFG libraries for thermal neutron induced fission of: Th227, Th229, U232, U233, U235, Np237, Pu239, Pu240, Pu241, Pu242, Am241, Am242, Cm245, Cf249, Cf251, Es254, and Fm255;
- Need COGDFG libraries for the fast neutron induced fission of: Pa231, U237, Np237, Np238, Pu238, Pu242, Am241, Am243, Cm242, Cm243, Cm244, Cm246, and Cm248;
- Need COGDFG libraries for high energy (14 MeV) neutron induced fission of: Th232, U233, U234, U235, U236, U238, Np237, Pu239, Pu240, Pu242, and Am241;
- Need COGDFG libraries for **spontaneous fission** of:

U238, Cm244, Cm246, Cm248, Cf250, Cf252, Es253, Fm254, and Fm256.

- Need Criticality Slide Rule for Plutonium (Proposal)

