UNCLASSIFIED

COG11.1 Code Features for Shielding and Criticality Safety Analyses

PATRAM 2013, San Francisco, California August 22, 2013

D. Heinrichs, S. Kim, D. Biswas, P. Chou, R. Buck, E. Lent, and C. Lee

Lawrence Livermore National Laboratory

LLNL-PRES-642081

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Presentation Outline

- Introduction of COG,
- COG Modeling for 9975 Packaging,
- Nuclear Criticality Safety Evaluation,
- Radiation Shielding Application,
- Use of RadSrc option in COG,
- Conclusion

COG 11.1

- Modern, general purpose, high-fidelity, multi-particle, Monte Carlo transport code,
- Can solve complex 3-D shielding, and criticality safety problems,
- Code Features includes:
 - Multiple cross section library options,
 - Surface-of-revolution option,
 - Repeated structure modeling options,
 - Automatic time dependent photon source option.

COG Modeling of 9975 Container

- Content: 4.4 kg Pu-239 with 100 g polyethylene,
- Surface-of-revolution option used for curved geometry such as PCV and SCV,
- ENDF/B-VII.1 Cross section data library

Nuclear Criticality Safety Analysis (Normal Conditions of Transport)

Case	9975 SARP/SCALE	COG
Dry, Infinite Array	0.8734 ± 0.0015	0.8780 ± 0.0015
Flooded, Single, Infinite Water Reflection	0.9311 ± 0.0016	0.9302 ± 0.0015

Nuclear Criticality Safety Analysis (Hypothetical Accident Conditions)

HAC 5 x 5 x 2 Array

9975 SARP k-eff $\pm 1\sigma = 0.8605 \pm 0.0014$ COG k-eff $\pm 1\sigma = 0.8602 \pm 0.0016$

Radiation Dose Application

Content: 4.4 kg Pu Oxide

Dose Rate Comparison (mrem/hr)*

Detector		MCNP	COG
Тор	Neutron	8.97	9.19
	Photon	0.09	0.04
Bottom	Neutron	146.9	170.0
	Photon	2.75	1.77
Side	Neutron	151.9	146.7
	Photon	3.11	2.75

*MCNP and COG Results are ± 5%

RadSrc option in COG

Content: 1 gram Am-241 at the Bottom

Photon Dose Rates after a 1000-day decay

ORIGEN + MCNP (2 Codes, 2 Steps) COG using the RadSrc Option (1 Code, 1 Step)

Dose Rate Comparison for 1000-day Decay

Detector		MCNP	COG
Bottom	Photon	3.76E-5	2.85E-5
Side	Photon	2.79E-5	2.01E-5

Conclusions

- COG can be applied to SARP preparation in the areas of criticality safety and radiation dose assessment,
- Demonstrated that 1-step radiation dose calculations are feasible with the COG RadSrc option,
- COG11.1 is distributed through the Radiation Safety Information Computational Center (RSICC),
- COG11.1 also distributed through the OECD NEA Data Bank,
- For additional details, visit http://cog.llnl.gov

